Proposition
Co is not complemented in
$$\ell^{\infty}$$
.
Proof by contradiction: Suppose Co is complemented in ℓ^{∞} .
Claim 1: There exists $(f_n) \in (\ell^{\infty})^*$ such that $C_0 = \bigcap \ker f_n$
Pf: By assumption, there exists closed $F \subset \ell^{\infty}$ such that $\ell^{\infty} = C_0 \oplus F$.
Put $P: \ell^{\infty} \rightarrow F$ be the projection.
Then $C_0 = \ker P$ and P is bounded by clased graph than
 $f(\pi_n), \chi \in \ell^{\infty}$, write $\chi_n = \chi_n + \chi_n$ with $\chi_n \in F$, $\chi_n \in C_0$.
 $\chi = \chi + \chi$ with $\chi \in F$.
Since F is closed, $\chi' \in F$.
On the other hand, $\chi_n = \chi_n - \chi_n \rightarrow \chi'$.
Since C is closed, $\chi - \chi' \in C_0$
Now $\chi = \chi + \chi = \chi' + (\chi - \chi')$ with $\chi, \chi' \in F, \chi, \chi, \chi' \in C_0$.
By uniquences of decomposition, $\chi' = \chi = P\chi$.

Let
$$e_n^*: l^{\infty} \rightarrow |K|$$
 be the n-th coordinate functional
and $f_n = e_n^{*} \circ P$. Then $f_n \in (l^{\infty})^*$ and $c_0 = \ker P = \bigcap \ker f_n$

Claim 2: For any
$$\alpha \in [0, \Omega \cap Q^{c}]$$
, there exists $N_{0} \subset N$
such that $N_{0} \cap N_{0}$ is finite for any $\alpha \neq \beta$
if: Write $[0, \Omega \cap Q^{c}] \cap Q^{c}$, there exists a consequence
 $(Y_{0k})_{k=1}^{\infty}$ such that $Y_{0k} \rightarrow \alpha$
Put $N_{0} := \{N_{k} : k = 1, 2, ...\}$.
For any $\alpha \neq \beta$. Take $\xi \in [\alpha - \beta]/4$.
 $N_{0} := \{N_{k} : k = 1, 2, ...\}$.
For $m_{0} \neq \beta$. Take $\xi \in [\alpha - \beta]/4$.
 $N_{0} := \{N_{k} : k = 1, 2, ...\}$. $N_{0} = \{N_{0}^{c} : \ell = 1, 2, ...\}$
 $N_{0} := \{N_{k} : k = 1, 2, ...\}$, $N_{0} = \{N_{0}^{c} : \ell = 1, 2, ...\}$
 $N_{0} := \{N_{k} : k = 1, 2, ...\}$, $N_{0} = \{N_{0}^{c} : \ell = 1, 2, ...\}$
 $N_{0} := \{N_{k} : k = 1, 2, ...\}$, $N_{0} = \{N_{0}^{c} : \ell = 1, 2, ...\}$
 $N_{0} := \{N_{k} : k = 1, 2, ...\}$, $N_{0} = \{N_{0}^{c} : \ell = 1, 2, ...\}$
Thus $h_{0}^{c} = \{N_{0} : n_{0} \in N_{0}^{c} : \ell = 1, 2, ...\}$
Therefore $N_{0} \cap N_{0}^{c}$ is finiste.

(laim 3 : Put $X_{0}(k) = \{1 : k \in N_{0}, ...\}$
 $I^{c} f \in (\mathbb{C}^{0})^{N}$ with $G \in kevf$, then for any $\eta > 0$,
 $E = \{\alpha \in [0, \Omega \cap \Omega^{c} : |f(\infty)| \ge \eta\}$ is finiste.

If $f \in (C_{0} : \eta \in [f(\infty)] \ge \eta]$ is finiste.

If Consider $f : Re(f) + iI_{0}f$.
 $Ve may assume f is real.$
Let $\alpha_{1}, ..., \alpha_{N} \in E$.
Put $y_{j}(k) = \{1, k \in N_{0} \setminus \bigcup N_{0}$.

Then
$$\chi_{kj} = y_j \in C_0$$
 by $C_{laim} \geq .$
Thus $f(\chi_{kj}) = f(\chi_j)$ for $j = 1, ..., N$.
And $j : k : y_i(k) = 1 \in I$.
Then $\| \sum_{j=1}^{k} y_j \|_{\infty} = 1$.
Thus $\| \| f(| \geq f(\sum_{j=1}^{k} y_j) = \sum_{j=1}^{k} f(\chi_{kj}) \geq N \eta$.
Therefore, $N \leq \frac{\| f(| \eta \|_{\eta})}{\eta}$.
Proof of Proposition:
Let $S := \bigcup_{n=1}^{\infty} j \geq c(0, 1) \cap Q^c : f_n(\chi_k) \neq 0$]
By Chaim 3, S is constable.
But $[0, 1] \cap Q^c$ in unconstable.
Then there exists $X \in [0, 1] \cap Q^c$ such that
 $\chi_X \in \bigcap_{k \in V_i}(f_n) = C_0$
But $\chi_X \notin C_0$ since N_X is infinite.
Curbrodiction !